def _algo_2_vert_comp(self, sent1_block_a, sent2_block_a, sent1_block_b, sent2_block_b):
comparison_feats = []
ws_no_inf = [w for w in self.filter_widths if not np.isinf(w)]
for pool in ('max', 'min', 'mean'):
for ws1 in self.filter_widths:
x1 = sent1_block_a[ws1][pool]
batch_size = x1.size()[0]
for ws2 in self.filter_widths:
x2 = sent2_block_a[ws2][pool]
if (not np.isinf(ws1) and not np.isinf(ws2)) or (np.isinf(ws1) and np.isinf(ws2)):
comparison_feats.append(F.cosine_similarity(x1, x2).contiguous().view(batch_size, 1))
comparison_feats.append(F.pairwise_distance(x1, x2))
comparison_feats.append(torch.abs(x1 - x2))
for pool in ('max', 'min'):
for ws in ws_no_inf:
oG_1B = sent1_block_b[ws][pool]
oG_2B = sent2_block_b[ws][pool]
for i in range(0, self.n_per_dim_filters):
x1 = oG_1B[:, :, i]
x2 = oG_2B[:, :, i]
batch_size = x1.size()[0]
comparison_feats.append(F.cosine_similarity(x1, x2).contiguous().view(batch_size, 1))
comparison_feats.append(F.pairwise_distance(x1, x2))
comparison_feats.append(torch.abs(x1 - x2))
return torch.cat(comparison_feats, dim=1)
评论列表
文章目录