def _algo_1_horiz_comp(self, sent1_block_a, sent2_block_a):
comparison_feats = []
for pool in ('max', 'min', 'mean'):
for ws in self.filter_widths:
x1 = sent1_block_a[ws][pool]
x2 = sent2_block_a[ws][pool]
batch_size = x1.size()[0]
comparison_feats.append(F.cosine_similarity(x1, x2).contiguous().view(batch_size, 1))
comparison_feats.append(F.pairwise_distance(x1, x2))
return torch.cat(comparison_feats, dim=1)
评论列表
文章目录