test_nn.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:pytorch 作者: pytorch 项目源码 文件源码
def test_affine_grid(self):
        # test known input on CPU
        input = Variable(torch.arange(1, 7).view(1, 2, 3))
        output = F.affine_grid(input, torch.Size([1, 1, 2, 2]))
        groundtruth = torch.Tensor(
            [[[0, -3], [2, 5]], [[4, 7], [6, 15]]]).view(1, 2, 2, 2)
        self.assertEqual(output.data, groundtruth)

        # do gradcheck
        N = random.randint(1, 8)
        C = random.randint(1, 8)
        H = random.randint(1, 8)
        W = random.randint(1, 8)
        sz = torch.Size([N, C, H, W])
        inp = Variable(torch.randn(N, 2, 3), requires_grad=True)
        self.assertTrue(gradcheck(lambda inp: F.affine_grid(inp, sz), (inp,)))

        # test CPU against CUDA
        if TEST_CUDNN:
            input_cpu = Variable(torch.randn(N, 2, 3), requires_grad=True)
            out_cpu = F.affine_grid(input_cpu, sz)
            gradients = torch.randn(out_cpu.size())
            out_cpu.backward(gradients)
            input_gpu = Variable(input_cpu.data.cuda(), requires_grad=True)
            out_cuda = F.affine_grid(input_gpu, sz)
            out_cuda.backward(gradients.cuda())
            self.assertEqual(out_cpu, out_cuda)
            self.assertEqual(input_cpu.grad, input_gpu.grad)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号