def compare_grid_sample():
# do gradcheck
N = random.randint(1, 8)
C = 2 # random.randint(1, 8)
H = 5 # random.randint(1, 8)
W = 4 # random.randint(1, 8)
input = Variable(torch.randn(N, C, H, W).cuda(), requires_grad=True)
input_p = input.clone().data.contiguous()
grid = Variable(torch.randn(N, H, W, 2).cuda(), requires_grad=True)
grid_clone = grid.clone().contiguous()
out_offcial = F.grid_sample(input, grid)
grad_outputs = Variable(torch.rand(out_offcial.size()).cuda())
grad_outputs_clone = grad_outputs.clone().contiguous()
grad_inputs = torch.autograd.grad(out_offcial, (input, grid), grad_outputs.contiguous())
grad_input_off = grad_inputs[0]
crf = RoICropFunction()
grid_yx = torch.stack([grid_clone.data[:,:,:,1], grid_clone.data[:,:,:,0]], 3).contiguous().cuda()
out_stn = crf.forward(input_p, grid_yx)
grad_inputs = crf.backward(grad_outputs_clone.data)
grad_input_stn = grad_inputs[0]
pdb.set_trace()
delta = (grad_input_off.data - grad_input_stn).sum()
评论列表
文章目录