net_utils.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:faster-rcnn.pytorch 作者: jwyang 项目源码 文件源码
def compare_grid_sample():
    # do gradcheck
    N = random.randint(1, 8)
    C = 2 # random.randint(1, 8)
    H = 5 # random.randint(1, 8)
    W = 4 # random.randint(1, 8)
    input = Variable(torch.randn(N, C, H, W).cuda(), requires_grad=True)
    input_p = input.clone().data.contiguous()

    grid = Variable(torch.randn(N, H, W, 2).cuda(), requires_grad=True)
    grid_clone = grid.clone().contiguous()

    out_offcial = F.grid_sample(input, grid)    
    grad_outputs = Variable(torch.rand(out_offcial.size()).cuda())
    grad_outputs_clone = grad_outputs.clone().contiguous()
    grad_inputs = torch.autograd.grad(out_offcial, (input, grid), grad_outputs.contiguous())
    grad_input_off = grad_inputs[0]


    crf = RoICropFunction()
    grid_yx = torch.stack([grid_clone.data[:,:,:,1], grid_clone.data[:,:,:,0]], 3).contiguous().cuda()
    out_stn = crf.forward(input_p, grid_yx)
    grad_inputs = crf.backward(grad_outputs_clone.data)
    grad_input_stn = grad_inputs[0]
    pdb.set_trace()

    delta = (grad_input_off.data - grad_input_stn).sum()
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号