def test_upsamplingNearest2d(self):
m = nn.Upsample(size=4, mode='nearest')
in_t = torch.ones(1, 1, 2, 2)
out_t = m(Variable(in_t))
self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data)
input = Variable(torch.randn(1, 1, 2, 2), requires_grad=True)
self.assertEqual(
F.upsample(input, 4, mode='nearest'),
F.upsample(input, scale_factor=2, mode='nearest'))
gradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input])
gradgradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input])
评论列表
文章目录