def test_backward_train_mode_computes_forward_pass():
momentum = 0.1
eps = 1e-5
weight = torch.randn(10).cuda()
bias = torch.randn(10).cuda()
running_mean = torch.randn(10).cuda()
running_var = torch.randn(10).abs().cuda()
weight_efficient = weight.clone()
bias_efficient = bias.clone()
running_mean_efficient = running_mean.clone()
running_var_efficient = running_var.clone()
input_1 = torch.randn(4, 5).cuda()
input_2 = torch.randn(4, 5).cuda()
storage = torch.Storage(40).cuda()
input_var = Variable(torch.cat([input_1, input_2], dim=1), requires_grad=True)
weight_var = Parameter(weight)
bias_var = Parameter(bias)
bn_var = F.batch_norm(
input=input_var,
running_mean=running_mean,
running_var=running_var,
weight=weight_var,
bias=bias_var,
training=True,
momentum=momentum,
eps=eps
)
bn = bn_var.data
bn_var.backward(gradient=input_var.data.clone().fill_(1))
input_grad = input_var.grad.data
weight_grad = weight_var.grad.data
bias_grad = bias_var.grad.data
input_efficient = torch.cat([input_1, input_2], dim=1)
input_efficient_orig = input_efficient.clone()
func = _EfficientBatchNorm(
storage=storage,
running_mean=running_mean_efficient,
running_var=running_var_efficient,
training=True,
momentum=momentum,
eps=eps
)
bn_efficient = func.forward(weight_efficient, bias_efficient, input_efficient)
grad_out_efficient = bn_efficient.clone().fill_(1)
weight_grad_efficient, bias_grad_efficient, input_grad_efficient = func.backward(
weight_efficient, bias_efficient, input_efficient_orig, grad_out_efficient)
assert(almost_equal(bn, bn_efficient))
assert(grad_out_efficient.storage().data_ptr() == input_grad_efficient.storage().data_ptr())
assert(almost_equal(input_grad, input_grad_efficient))
assert(almost_equal(weight_grad, weight_grad_efficient))
assert(almost_equal(bias_grad, bias_grad_efficient))
efficient_batch_norm_test.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录