def forward(self, x):
# Transpose to the shape (sentence_batch size, word dim, sequence length)
x = x.transpose(0, 1).transpose(1, 2)
feature_maps = []
for layer in self.layers:
x = layer(x)
feature_maps.append(F.max_pool1d(x, kernel_size=x.size(2)).squeeze())
features = torch.cat(feature_maps, dim=1)
return features
评论列表
文章目录