def forward(self, x):
# print("fffff",x)
embed = self.embed(x)
# CNN
cnn_x = embed
cnn_x = torch.transpose(cnn_x, 0, 1)
cnn_x = cnn_x.unsqueeze(1)
cnn_x = [F.relu(conv(cnn_x)).squeeze(3) for conv in self.convs1] # [(N,Co,W), ...]*len(Ks)
cnn_x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in cnn_x] # [(N,Co), ...]*len(Ks)
cnn_x = torch.cat(cnn_x, 1)
cnn_x = self.dropout(cnn_x)
# LSTM
lstm_x = embed.view(len(x), embed.size(1), -1)
lstm_out, self.hidden = self.lstm(lstm_x, self.hidden)
lstm_out = torch.transpose(lstm_out, 0, 1)
lstm_out = torch.transpose(lstm_out, 1, 2)
# lstm_out = F.tanh(lstm_out)
lstm_out = F.max_pool1d(lstm_out, lstm_out.size(2)).squeeze(2)
# CNN and LSTM cat
cnn_x = torch.transpose(cnn_x, 0, 1)
lstm_out = torch.transpose(lstm_out, 0, 1)
cnn_lstm_out = torch.cat((cnn_x, lstm_out), 0)
cnn_lstm_out = torch.transpose(cnn_lstm_out, 0, 1)
# linear
cnn_lstm_out = self.hidden2label1(F.tanh(cnn_lstm_out))
cnn_lstm_out = self.hidden2label2(F.tanh(cnn_lstm_out))
# output
logit = cnn_lstm_out
return logit
model_CNN_LSTM.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录