def train(epoch,lr,f):
model.train()
train_loss=0
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.zero_grad()
output,l=model(data,target)
loss = F.nll_loss(output[-1], target)
if not args.lastout:
for i in range(seq-1):
loss = F.nll_loss(output[i], target)+loss
loss.backward()
optimizer.step()
train_loss+=loss.data[0]
if epoch>=0:
torchvision.utils.save_image(l,'{}.png'.format(epoch))
if batch_idx % args.log_interval == 0 and args.verbose:
#print(l,file=f)
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
train_loss /= len(train_loader)
return train_loss
评论列表
文章目录