def test():
net.eval()
loss_avg = 0.0
correct = 0
for batch_idx, (data, target) in enumerate(test_loader):
data, target = torch.autograd.Variable(data.cuda()), torch.autograd.Variable(target.cuda())
# forward
output = net(data)
loss = F.cross_entropy(output, target)
# accuracy
pred = output.data.max(1)[1]
correct += pred.eq(target.data).sum()
# test loss average
loss_avg += loss.data[0]
state['test_loss'] = loss_avg / len(test_loader)
state['test_accuracy'] = correct / len(test_loader.dataset)
# Main loop
评论列表
文章目录