scaled_mnist.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:pytorch-deform-conv 作者: oeway 项目源码 文件源码
def test(model, generator, batch_num, epoch):
    model.eval()
    test_loss = 0
    correct = 0
    for batch_idx in range(batch_num):
        data, target = next(generator)
        data, target = torch.from_numpy(data), torch.from_numpy(target)
        # convert BHWC to BCHW
        data = data.permute(0, 3, 1, 2)
        data, target = data.float().cuda(), target.long().cuda()

        data, target = Variable(data), Variable(target)
        output = model(data)
        test_loss += F.cross_entropy(output, target).data[0]
        pred = output.data.max(1)[1] # get the index of the max log-probability
        correct += pred.eq(target.data).cpu().sum()

    test_loss /=  batch_num# loss function already averages over batch size
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, n_test, 100. * correct / n_test))


# ---
# Normal CNN
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号