def get_scores(self):
self.model.eval()
test_cross_entropy_loss = 0
qids = []
true_labels = []
predictions = []
for batch in self.data_loader:
qids.extend(batch.id.data.cpu().numpy())
output = self.model(batch.sentence_1, batch.sentence_2, batch.ext_feats)
test_cross_entropy_loss += F.cross_entropy(output, batch.label, size_average=False).data[0]
true_labels.extend(batch.label.data.cpu().numpy())
predictions.extend(output.data.exp()[:, 1].cpu().numpy())
del output
qids = list(map(lambda n: int(round(n * 10, 0)) / 10, qids))
mean_average_precision, mean_reciprocal_rank = get_map_mrr(qids, predictions, true_labels, self.data_loader.device)
test_cross_entropy_loss /= len(batch.dataset.examples)
return [test_cross_entropy_loss, mean_average_precision, mean_reciprocal_rank], ['cross entropy loss', 'map', 'mrr']
评论列表
文章目录