def forward(self, prior):
prior = prior.cuda()
fc_layer = leaky_relu(self.linear1(prior).view(-1, 512, 4, 4), negative_slope = 0.2)
deconv_layer1 = self.bn1(leaky_relu(self.deconv1(fc_layer), negative_slope = 0.2))
deconv_layer2 = self.bn2(leaky_relu(self.deconv2(deconv_layer1), negative_slope = 0.2))
deconv_layer3 = tanh(self.deconv3(deconv_layer2))
return deconv_layer3
# Infer without batch normalization cannot improve image quality
# def infer(self, prior):
# prior = prior.cuda()
# fc_layer = leaky_relu(self.linear1(prior).view(-1, 512, 4, 4), negative_slope = 0.2)
# deconv_layer1 = leaky_relu(self.deconv1(fc_layer), negative_slope = 0.2)
# deconv_layer2 = leaky_relu(self.deconv2(deconv_layer1), negative_slope = 0.2)
# deconv_layer3 = tanh(self.deconv3(deconv_layer2))
# return deconv_layer3
评论列表
文章目录