def forward(self, inp):
"""
:param inp: torch.FloatTensor (batch_size x inp_size)
:return: torch.FloatTensor (batch_size x nb_classes)
"""
# hidden layers
for layer in self.layers:
out = layer(inp)
if self.act is not None:
out = getattr(F, self.act)(out)
if self.dropout > 0:
out = F.dropout(out, p=self.dropout, training=self.training)
inp = out
# output projection
out = self.output(out)
return out
评论列表
文章目录