def object_detection_gt_boxes(self, image_path, gt_boxes):
min_score = 1/150.
image = cv2.imread(image_path)
# print 'image.shape', image.shape
im_data, im_scales = self.get_image_blob_noscale(image)
gt_boxes[:, :4] = gt_boxes[:, :4] * im_scales[0]
# print 'im_data.shape', im_data.shape
# print 'im_scales', im_scales
im_info = np.array(
[[im_data.shape[1], im_data.shape[2], im_scales[0]]],
dtype=np.float32)
object_result = self(im_data, im_info, gt_boxes)[0]
cls_prob_object, bbox_object, object_rois = object_result[:]
prob_object = F.softmax(cls_prob_object)
prob = prob_object.cpu().data
top_5_cls = torch.topk(prob[:, 1:], 5, dim=1)
# print 'im_scales[0]', im_scales[0]
return top_5_cls[1].numpy()
评论列表
文章目录