def sw_compute_features(learn_data, overwrite_existing=False, worker_id=None):
# learn_data = db['learns'].find_one(learn_id)
model_data = db[learn_data['Model'][-1]].find_one(learn_data['Model'][0])
# sample_df = load_df_from_sample_notation(model_data['Initial Sample Location'])
if not check_sample_exists(model_data['Feature Sample Location']) or overwrite_existing:
feature_generating_function_code = marshal.loads(db[model_data['Feature Generation Function'][-1]]\
.find_one(model_data['Feature Generation Function'][0])['Code'])
feature_generating_function = types.FunctionType(feature_generating_function_code, globals())
# save_df_to_sample_notation(, model_data['Feature Sample Location'])
learn_data = feature_generating_function(learn_data, model_data)
learn_data['Status']['Features Computed'] = True
db['learns'].update(learn_data['_id'], learn_data)
mongo_enabled_learning.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录