mongo_enabled_learning.py 文件源码

python
阅读 22 收藏 0 点赞 0 评论 0

项目:model_sweeper 作者: akimovmike 项目源码 文件源码
def sw_compute_features(learn_data, overwrite_existing=False, worker_id=None):

#     learn_data = db['learns'].find_one(learn_id)
    model_data = db[learn_data['Model'][-1]].find_one(learn_data['Model'][0])


#     sample_df = load_df_from_sample_notation(model_data['Initial Sample Location'])

    if not check_sample_exists(model_data['Feature Sample Location']) or overwrite_existing:

        feature_generating_function_code = marshal.loads(db[model_data['Feature Generation Function'][-1]]\
                                                  .find_one(model_data['Feature Generation Function'][0])['Code'])


        feature_generating_function = types.FunctionType(feature_generating_function_code, globals())

        # save_df_to_sample_notation(, model_data['Feature Sample Location'])
        learn_data = feature_generating_function(learn_data, model_data)

    learn_data['Status']['Features Computed'] = True
    db['learns'].update(learn_data['_id'], learn_data)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号