def simple_poly_fit(x , y , number_of_uni_point, smoothness):
number_of_point = len(x)
t = np.zeros_like(x)
for i in range(0 , number_of_point):
if i > 0:
t[i] = t[i - 1] + np.sqrt((x[i] - x[i - 1]) ** 2 + (y[i] - y[i - 1]) ** 2)
else:
t[i] = 0
k = min(3 , number_of_point - 1) # spline order
nest = -1 # estimate of number of knots needed (-1 = maximal)
tckp , u = splprep([x , y , t] , s = smoothness , k = k , nest = -1)
x_new , y_new, t_new = splev(linspace(0,1,number_of_uni_point),tckp)
return x_new , y_new
########################################################################
########################################################################
Channel_Fun.py 文件源码
python
阅读 16
收藏 0
点赞 0
评论 0
评论列表
文章目录