def plot_interpolated(self, aperture_centers, aperture_means):
"""
This function ...
:param aperture_centers:
:param aperture_means:
:return:
"""
x_values = np.array([center.x for center in aperture_centers])
y_values = np.array([center.y for center in aperture_centers])
x_ticks = np.arange(0, self.frame.xsize, 1)
y_ticks = np.arange(0, self.frame.ysize, 1)
z_grid = mlab.griddata(x_values, y_values, aperture_means, x_ticks, y_ticks)
self.sky = Frame(z_grid)
from matplotlib.backends import backend_agg as agg
from matplotlib import cm
# plot
#fig = Figure() # create the figure
fig = plt.figure()
agg.FigureCanvasAgg(fig) # attach the rasterizer
ax = fig.add_subplot(1, 1, 1) # make axes to plot on
ax.set_title("Interpolated Contour Plot of Experimental Data")
ax.set_xlabel("X")
ax.set_ylabel("Y")
cmap = cm.get_cmap("hot") # get the "hot" color map
contourset = ax.contourf(x_ticks, y_ticks, z_grid, 10, cmap=cmap)
cbar = fig.colorbar(contourset)
cbar.set_ticks([0, 100])
fig.axes[-1].set_ylabel("Z") # last axes instance is the colorbar
plt.show()
# -----------------------------------------------------------------
评论列表
文章目录