def feature_agglomeration(df, number_of_clusters=int(df.shape[1] / 1.2)):
df = df.copy()
# Todo: find optimal number of clusters for the feature clustering
# number_of_clusters = int(df.shape[1]/2)
agglomerated_features = FeatureAgglomeration(n_clusters=number_of_clusters)
if any(tuple(df.columns == 'Call Outcome')):
res = agglomerated_features.fit_transform(np.reshape(np.array(df.dropna().values), df.dropna()
.shape), y=df['Call Outcome'].values)
else:
res = agglomerated_features.fit_transform(np.reshape(np.array(df.values), df.shape))
df = pd.DataFrame(data=res)
return df
two_sigma_financial_modelling.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录