def _clusterAffinity(aff, k, imdb, cls_idx):
""" Cluster error correlation matrix using spectral clustering into k cluster,
show the class labels in each cluster.
"""
# clustering model
spectral = SpectralClustering(n_clusters=k,
eigen_solver='arpack',
affinity="precomputed")
print 'Performing clustering...'
labels = spectral.fit_predict(aff)
# print out all labels
for i in xrange(k):
find_idx = np.where(labels==i)[0]
print 'The list of classes in cluster {}'.format(i)
print [imdb.classes[id] for id in find_idx]
print '--------------------------------------------'
return labels
if __name__ == '__main__':
# TODO: debug code if necessary
pass
评论列表
文章目录