def clustering(docs,n_clusters): # ?? n_clusters ???
kmeans_model=KMeans(n_clusters=n_clusters,random_state=1).fit(docs) # kmeans??
labels=kmeans_model.labels_
# hmodel=AgglomerativeClustering(n_clusters=n_clusters).fit(docs) # ????
# labels=hmodel.labels_
score=metrics.silhouette_score(np.array(docs),labels,metric='euclidean') # euclidean ??
return labels,score
kmeans_cluster.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录