def main():
centers = get_list('out_center.txt')
labels = get_list('142-label.txt')
judge(centers, labels)
n_class = int(len(centers) * 0.18)
est = KMeans(n_clusters=n_class, max_iter=1000)
est.fit(centers)
new_list = []
for x, y in est.cluster_centers_:
min_num = 10000
min_x = -1
min_y = -1
for x_, y_ in centers:
dist = distance(x, y, x_, y_)
if (dist < min_num) or (min_x == -1):
min_num = dist
min_x = x_
min_y = y_
new_list.append([min_x, min_y])
judge(new_list, labels)
judge(est.cluster_centers_, labels)
# db = DBSCAN(eps=0.3, min_samples=180).fit(centers)
# print(db.core_sample_indices_)
# judge(new_list, labels)
# print(est.cluster_centers_)
# save_list('result.txt', est.cluster_centers_)
# af = AffinityPropagation(preference=180).fit(centers)
# judge(af.cluster_centers_, labels)
评论列表
文章目录