def fit(self, X):
_X = X[self.__applicable_rows(X)]
companies = _X.groupby('recipient_id').apply(self.__company_stats) \
.reset_index()
companies = companies[self.__applicable_company_rows(companies)]
self.cluster_model = KMeans(n_clusters=3)
self.cluster_model.fit(companies[self.CLUSTER_KEYS])
companies['cluster'] = self.cluster_model.predict(companies[self.CLUSTER_KEYS])
self.clusters = companies.groupby('cluster') \
.apply(self.__cluster_stats) \
.reset_index()
self.clusters['threshold'] = \
self.clusters['mean'] + 4 * self.clusters['std']
return self
meal_price_outlier_classifier.py 文件源码
python
阅读 16
收藏 0
点赞 0
评论 0
评论列表
文章目录