def cluster(centers):
n_class = int(len(centers) * 0.18)
est = KMeans(n_clusters=n_class, max_iter=1000)
est.fit(centers)
new_list = []
for x, y in est.cluster_centers_:
min_num = 10000
min_x = -1
min_y = -1
for x_, y_ in centers:
dist = distance(x, y, x_, y_)
if (dist < min_num) or (min_x == -1):
min_num = dist
min_x = x_
min_y = y_
new_list.append([min_x, min_y])
return new_list
评论列表
文章目录