kmeans.py 文件源码

python
阅读 35 收藏 0 点赞 0 评论 0

项目:ref-extract 作者: brandonrobertz 项目源码 文件源码
def cluster(X, seed=0, n_clusters=20, alg='kmeans'):
    """
    Perform k-means on given X data. For alg, use one of:
    'kmeans' (sklearn KMeans) or 'spherical' (SphericalKMeans)
    returns (X pred clusters, cluster centers)
    NOTE: euclidean tends to perform very poorly
    """
    # log("Clustering k-means with {} clusters".format(n_clusters))
    if alg == 'kmeans':
        Model = KMeans
    elif alg == 'spherical':
        # inplace l2 normalization (spherical k-means assumes this)
        normalize(X, 'l2', copy=False)
        Model = SphericalKMeans

    kmeans = Model(
        n_clusters=int(n_clusters), random_state=seed
    )
    pred_clusters = kmeans.fit_predict(X)
    return pred_clusters, kmeans.cluster_centers_
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号