def cluster(data,true_labels,n_clusters=3):
km = KMeans(init='k-means++', n_clusters=n_clusters, n_init=10)
km.fit(data)
km_means_labels = km.labels_
km_means_cluster_centers = km.cluster_centers_
km_means_labels_unique = np.unique(km_means_labels)
colors_ = cycle(colors.cnames.keys())
initial_dim = np.shape(data)[1]
data_2 = tsne(data,2,initial_dim,30)
plt.figure(figsize=(12, 6))
plt.scatter(data_2[:,0],data_2[:,1], c=true_labels)
plt.title('True Labels')
return km_means_labels
评论列表
文章目录