def test_integration_quic_graph_lasso_fun(self, params_in, expected):
'''
Just tests inputs/outputs (not validity of result).
'''
X = datasets.load_diabetes().data
lam = 0.5
if 'lam' in params_in:
lam = params_in['lam']
del params_in['lam']
S = np.corrcoef(X, rowvar=False)
if 'init_method' in params_in:
if params_in['init_method'] == 'cov':
S = np.cov(X, rowvar=False)
del params_in['init_method']
precision_, covariance_, opt_, cpu_time_, iters_, duality_gap_ =\
quic(S, lam, **params_in)
result_vec = [
np.linalg.norm(covariance_),
np.linalg.norm(precision_),
np.linalg.norm(opt_),
np.linalg.norm(duality_gap_),
]
print(result_vec)
assert_allclose(expected, result_vec, atol=1e-1, rtol=1e-1)
评论列表
文章目录