def main():
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
regr = linear_model.LinearRegression()
regr.fit(diabetes_X_train, diabetes_y_train)
print('Coefficients: \n', regr.coef_)
print("Mean squared error: %.2f" %
np.mean((regr.predict(diabetes_X_test) - diabetes_y_test)**2))
print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))
评论列表
文章目录