def regression():
# Generate a random regression problem
X, y = make_regression(n_samples=500, n_features=5, n_informative=5,
n_targets=1, noise=0.05, random_state=1111,
bias=0.5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=1111)
model = RandomForestRegressor(n_estimators=50, max_depth=10, max_features=3, )
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print('regression, mse: %s'
% mean_squared_error(y_test.flatten(), predictions.flatten()))
评论列表
文章目录