def regression():
# Generate a random regression problem
X, y = make_regression(n_samples=10000, n_features=100,
n_informative=75, n_targets=1, noise=0.05,
random_state=1111, bias=0.5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random_state=1111)
model = LinearRegression(lr=0.01, max_iters=2000, penalty='l2', C=0.03)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print('regression mse', mean_squared_error(y_test, predictions))
评论列表
文章目录