def regression():
# Generate a random regression problem
X, y = make_regression(n_samples=500, n_features=5,
n_informative=5, n_targets=1,
noise=0.05, random_state=1111, bias=0.5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random_state=1111)
model = knn.KNNRegressor(k=5, distance_func=distance.euclidean)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print('regression mse', mean_squared_error(y_test, predictions))
评论列表
文章目录