def regression():
# Generate a random regression problem
X, y = make_regression(n_samples=5000, n_features=25, n_informative=25,
n_targets=1, random_state=100, noise=0.05)
y *= 0.01
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=1111)
model = NeuralNet(
layers=[
Dense(64, Parameters(init='normal')),
Activation('linear'),
Dense(32, Parameters(init='normal')),
Activation('linear'),
Dense(1),
],
loss='mse',
optimizer=Adam(),
metric='mse',
batch_size=256,
max_epochs=15,
)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print("regression mse", mean_squared_error(y_test, predictions.flatten()))
评论列表
文章目录