def test_parallel():
dataset = load_breast_cancer()
X, y = dataset['data'], dataset['target_names'].take(dataset['target'])
# Classifier to be used in the metaheuristic
clf = SVC()
for metaclass in METACLASSES :
meta = metaclass(classifier=clf, random_state=0, make_logbook=False,
repeat=2, number_gen=2, parallel=True, verbose=True,
size_pop=2)
print("Checking parallel ", meta._name)
# Fit the classifier
meta.fit(X, y, normalize=True)
# Transformed dataset
X_1 = meta.transform(X)
meta = metaclass(classifier=clf, random_state=0, make_logbook=False,
repeat=2, number_gen=2, parallel=True, size_pop=2)
# Fit and Transform
X_2 = meta.fit_transform(X=X, y=y, normalize=True)
# Check Function
assert_array_equal(X_1, X_2)
评论列表
文章目录