def test_plot():
dataset = load_breast_cancer()
X, y = dataset['data'], dataset['target_names'].take(dataset['target'])
# Classifier to be used in the metaheuristic
clf = SVC()
for metaclass in METACLASSES:
meta = metaclass(classifier=clf, random_state=0, verbose=False,
make_logbook=True, repeat=1, number_gen=2,
size_pop=2)
print("Checking plotting: ", meta._name)
# Fit the classifier
meta.fit(X, y, normalize=True)
# Transformed dataset
X_1 = meta.transform(X)
meta = metaclass(classifier=clf, random_state=0,
make_logbook=True, repeat=1, number_gen=2, size_pop=2)
# Fit and Transform
X_2 = meta.fit_transform(X=X, y=y, normalize=True)
assert_array_equal(X_1, X_2)
# Plot the results of each test
meta.plot_results()
ga = GeneticAlgorithm(classifier=clf, random_state=1,
make_logbook=False, repeat=1)
# check for error in plot
ga.fit(X, y, normalize=True)
assert_raises(ValueError, ga.plot_results)
评论列表
文章目录