def test_model_assessment():
X, y = make_classification(n_samples=40, n_features=100, n_informative=2,
n_classes=2, n_redundant=0)
pipe = Pipeline([('enet', ElasticNetFeatureSelection()),
('ridge', RidgeClassifier())])
ma = ModelAssessment(GridSearchCV(pipe, {'enet__l1_ratio': [2]})).fit(X, y)
assert len(ma.cv_results_) == 0
评论列表
文章目录