def load_co2_data(prop=0.8):
from sklearn.datasets import fetch_mldata
from sklearn import cross_validation
data = fetch_mldata('mauna-loa-atmospheric-co2').data
X = data[:, [1]]
y = data[:, 0]
y = y[:, None]
X = X.astype(np.float64)
ntrain = y.shape[0]
train_inds = npr.choice(range(ntrain), int(prop*ntrain), replace=False)
valid_inds = np.setdiff1d(range(ntrain), train_inds)
X_train, y_train = X[train_inds].copy(), y[train_inds].copy()
X_valid, y_valid = X[valid_inds].copy(), y[valid_inds].copy()
return X_train, y_train, X_valid, y_valid
############################ Training & Visualizing ############################
评论列表
文章目录