def mnist(missingness="mcar", thr=0.2):
""" Loads corrupted MNIST
Parameters
----------
missingness: ('mcar', 'mar', 'mnar')
Type of missigness you want in your dataset
th: float between [0,1]
Percentage of missing data in generated data
Returns
-------
numpy.ndarray
"""
from sklearn.datasets import fetch_mldata
dataset = fetch_mldata('MNIST original')
corruptor = Corruptor(dataset.data, thr=thr)
data = getattr(corruptor, missingness)()
return {"X": data, "Y": dataset.target}
评论列表
文章目录