def setUpClass(self):
from sklearn.datasets import load_boston
import numpy as np
# Load data and train model
scikit_data = load_boston()
num_classes = 3
self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
t = scikit_data.target
target = np.digitize(t, np.histogram(t, bins = num_classes - 1)[1]) - 1
# Save the data and the model
self.scikit_data = scikit_data
self.target = target
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
test_decision_tree_classifier_numeric.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录