def test_boston_OHE_pipeline(self):
data = load_boston()
for categorical_features in [ [3], [8], [3, 8], [8,3] ]:
# Put it in a pipeline so that we can test whether the output dimension
# handling is correct.
model = Pipeline([("OHE", OneHotEncoder(categorical_features = categorical_features)),
("Normalizer", Normalizer())])
model.fit(data.data.copy(), data.target)
# Convert the model
spec = sklearn.convert(model, data.feature_names, 'out').get_spec()
input_data = [dict(zip(data.feature_names, row)) for row in data.data]
output_data = [{"out" : row} for row in model.transform(data.data.copy())]
result = evaluate_transformer(spec, input_data, output_data)
assert result["num_errors"] == 0
评论列表
文章目录