def test_boston_OHE_plus_trees(self):
data = load_boston()
pl = Pipeline([
("OHE", OneHotEncoder(categorical_features = [8], sparse=False)),
("Trees",GradientBoostingRegressor(random_state = 1))])
pl.fit(data.data, data.target)
# Convert the model
spec = convert(pl, data.feature_names, 'target')
# Get predictions
df = pd.DataFrame(data.data, columns=data.feature_names)
df['prediction'] = pl.predict(data.data)
# Evaluate it
result = evaluate_regressor(spec, df, 'target', verbose = False)
assert result["max_error"] < 0.0001
评论列表
文章目录