def test_RandomizedSearchCV():
'''
Use RandomizedSearchCV and LogisticRegression, to improve C, multi_class.
:return: None
'''
digits = load_digits()
X_train,X_test,y_train,y_test=train_test_split(digits.data, digits.target,
test_size=0.25,random_state=0,stratify=digits.target)
tuned_parameters ={ 'C': scipy.stats.expon(scale=100),
'multi_class': ['ovr','multinomial']}
clf=RandomizedSearchCV(LogisticRegression(penalty='l2',solver='lbfgs',tol=1e-6),
tuned_parameters,cv=10,scoring="accuracy",n_iter=100)
clf.fit(X_train,y_train)
print("Best parameters set found:",clf.best_params_)
print("Randomized Grid scores:")
for params, mean_score, scores in clf.grid_scores_:
print("\t%0.3f (+/-%0.03f) for %s" % (mean_score, scores.std() * 2, params))
print("Optimized Score:",clf.score(X_test,y_test))
print("Detailed classification report:")
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
评论列表
文章目录