def test_few_classification():
"""test_few.py: tests default classification settings"""
np.random.seed(42)
X, y = load_iris(return_X_y=True)
train,test = train_test_split(np.arange(X.shape[0]), train_size=0.75,
test_size=0.25)
few = FEW(classification=True,population_size='1x',generations=10)
few.fit(X[train],y[train])
print('train score:', few.score(X[train],y[train]))
print('test score:', few.score(X[test],y[test]))
# test boolean output
few = FEW(classification=True,otype='b',population_size='2x',
seed_with_ml=False,generations=10)
np.random.seed(42)
few.fit(X[train],y[train])
print('train score:', few.score(X[train],y[train]))
print('test score:', few.score(X[test],y[test]))
few.print_model()
评论列表
文章目录