def caffenet(lmdb, batch_size=256, include_acc=False):
data, label = L.Data(source=lmdb, backend=P.Data.LMDB,
batch_size=batch_size, ntop=2)
# the net itself
conv1, relu1 = conv_relu(data, 11, 96, stride=4)
pool1 = max_pool(relu1, 3, stride=2)
norm1 = L.LRN(pool1, local_size=5, alpha=1e-4, beta=0.75)
conv2, relu2 = conv_relu(norm1, 5, 256, pad=2, group=2)
pool2 = max_pool(relu2, 3, stride=2)
norm2 = L.LRN(pool2, local_size=5, alpha=1e-4, beta=0.75)
conv3, relu3 = conv_relu(norm2, 3, 384, pad=1)
conv4, relu4 = conv_relu(relu3, 3, 384, pad=1, group=2)
conv5, relu5 = conv_relu(relu4, 3, 256, pad=1, group=2)
pool5 = max_pool(relu5, 3, stride=2)
fc6, relu6 = fc_relu(pool5, 4096)
drop6 = L.Dropout(relu6, in_place=True)
fc7, relu7 = fc_relu(drop6, 4096)
drop7 = L.Dropout(relu7, in_place=True)
fc8 = L.InnerProduct(drop7, num_output=1000)
loss = L.SoftmaxWithLoss(fc8, label)
if include_acc:
acc = L.Accuracy(fc8, label)
return to_proto(loss, acc)
else:
return to_proto(loss)
评论列表
文章目录