def create_top_layer(self, phase=caffe.TRAIN, input_file="", train=True):
if self.hp.GCN_APPROX:
transform_param = {'scale': 0.0078125,'mean_value': 128}
else:
transform_param = {}
if train:
transform_param['mirror'] = self.hp.MIRROR
if self.hp.CROP:
# Adds random crops.
transform_param['crop_size'] = self.hp.IMAGE_HEIGHT
data, label = cl.Data(
batch_size=self.hp.TRAIN_BATCH_SIZE if train else self.hp.EVAL_BATCH_SIZE, backend=P.Data.LMDB, name="data",
source=input_file, ntop=2, include={'phase': phase}, transform_param=transform_param)
return data, label
# MAIN FUNCTION: Converts a net string to a caffe netspec.
# Adds the data layer and accuracy layer for test/train.
评论列表
文章目录