def __init__(self, model, deploy, mean_value=np.asarray([104, 117, 123]), crop_size=227, batch_size=1, feature_blob='pool5',log="../log/cnn.log", Test = False):
net = caffe.Classifier(deploy, model, caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', mean_value) # mean pixel
transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1]
transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB
net.blobs['data'].reshape(batch_size, 3, crop_size, crop_size)
self.net = net
self.transformer = transformer
self.feature_blob = feature_blob
self.log_file = open(log,"w")
self.Test = Test
评论列表
文章目录