def init_net():
net = caffe.Classifier(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt',
caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')
net.set_phase_test()
net.set_mode_cpu()
# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
net.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')) # ImageNet mean
net.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1]
net.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB
return net
caffe_features_classify.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录