def __init__(self):
"""Loading DNN model."""
model_path = '/home/jiri/caffe/models/bvlc_googlenet/'
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_googlenet.caffemodel'
#model_path = '/home/jiri/caffe/models/oxford102/'
#net_fn = model_path + 'deploy.prototxt'
#param_fn = model_path + 'oxford102.caffemodel'
# Patching model to be able to compute gradients.
# Note that you can also manually add "force_backward: true" line
#to "deploy.prototxt".
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('tmp.prototxt', 'w').write(str(model))
# ImageNet mean, training set dependent
mean = np.float32([104.0, 116.0, 122.0])
# the reference model has channels in BGR order instead of RGB
chann_sw = (2,1,0)
self.net = caffe.Classifier('tmp.prototxt', param_fn, mean=mean, channel_swap=chann_sw)
评论列表
文章目录