def caffenet_multilabel(data_layer_params, datalayer):
# setup the python data layer
n = caffe.NetSpec()
n.data, n.label = L.Python(module = 'pascal_multilabel_datalayers', layer = datalayer,
ntop = 2, param_str=str(data_layer_params))
# the net itself
n.conv1, n.relu1 = conv_relu(n.data, 11, 96, stride=4)
n.pool1 = max_pool(n.relu1, 3, stride=2)
n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75)
n.conv2, n.relu2 = conv_relu(n.norm1, 5, 256, pad=2, group=2)
n.pool2 = max_pool(n.relu2, 3, stride=2)
n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75)
n.conv3, n.relu3 = conv_relu(n.norm2, 3, 384, pad=1)
n.conv4, n.relu4 = conv_relu(n.relu3, 3, 384, pad=1, group=2)
n.conv5, n.relu5 = conv_relu(n.relu4, 3, 256, pad=1, group=2)
n.pool5 = max_pool(n.relu5, 3, stride=2)
n.fc6, n.relu6 = fc_relu(n.pool5, 4096)
n.drop6 = L.Dropout(n.relu6, in_place=True)
n.fc7, n.relu7 = fc_relu(n.drop6, 4096)
n.drop7 = L.Dropout(n.relu7, in_place=True)
n.score = L.InnerProduct(n.drop7, num_output=20)
n.loss = L.SigmoidCrossEntropyLoss(n.score, n.label)
return str(n.to_proto())
# crete net and solver prototxts.
评论列表
文章目录