def eval(testSetPath, clipSize):
checkTestAndTruths(testSetPath)
checkDirs(testSetPath)
imgTestDir = os.path.join(testSetPath, 'test/')
caffe.set_mode_cpu()
printTitle("Loading caffe model")
net = caffe.Net(
'src/deploy.prototxt'
, 'src/fcn8s-heavy-pascal.caffemodel'
, caffe.TEST)
print("Model loaded.")
testImgPaths = []
for testImg in os.listdir(imgTestDir):
testImgPaths.append(imgTestDir + testImg)
testImgPaths.sort()
printTitle("Generating predictions")
totalPredictTime = 0.00
for count in range(0, len(testImgPaths)):
totalPredictTime += predict(testImgPaths[count], testSetPath, clipSize, net)
printTitle("Average prediction time: %.3f" % (totalPredictTime / len(testImgPaths)))
printTitle("Generating scores")
segPath = os.path.join(testSetPath, 'seg/')
truthPath = os.path.join(testSetPath, 'truth/')
computeAccuracies(testSetPath, segPath, truthPath)
print("eval.py has completed.")
# Make folders for seg, labelled and mask predictions
eval.py 文件源码
python
阅读 35
收藏 0
点赞 0
评论 0
评论列表
文章目录