def feed_net(model_file, deploy_file, imagemean_file, image_files, show_pred):
"""feed network"""
n_files = len(image_files)
net = caffe.Net(deploy_file, model_file, caffe.TEST)
# define transformer for preprocessing
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_mean('data', np.load(imagemean_file).mean(1).mean(1))
transformer.set_transpose('data', (2, 0, 1))
transformer.set_channel_swap('data', (2, 1, 0))
transformer.set_raw_scale('data', 255.0)
net.blobs['data'].reshape(n_files, 3, 227, 227)
idx = 0
for image in image_files:
try:
im = caffe.io.load_image(image)
transformed_im = transformer.preprocess('data', im)
net.blobs['data'].data[idx, :, :, :] = transformed_im
idx += 1
except Exception:
pass
out = net.forward()
if show_pred:
print(out['prob'].argmax())
return net
layer_features.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录